92 research outputs found

    Nucleosome rotational setting is associated with transcriptional regulation in promoters of tissue-specific human genes

    Get PDF
    Human genes contain a 10 bp repeat of RR dinucleotides focused around the first nucleosome position suggesting a role in transcriptional control

    Needed for completion of the human genome: hypothesis driven experiments and biologically realistic mathematical models

    Get PDF
    With the sponsorship of ``Fundacio La Caixa'' we met in Barcelona, November 21st and 22nd, to analyze the reasons why, after the completion of the human genome sequence, the identification all protein coding genes and their variants remains a distant goal. Here we report on our discussions and summarize some of the major challenges that need to be overcome in order to complete the human gene catalog.Comment: Report and discussion resulting from the `Fundacio La Caixa' gene finding meeting held November 21 and 22 2003 in Barcelon

    Improving duplicated nodes position in vertebrate gene trees

    Full text link

    GC content shapes mRNA storage and decay in human cells.

    Get PDF
    mRNA translation and decay appear often intimately linked although the rules of this interplay are poorly understood. In this study, we combined our recent P-body transcriptome with transcriptomes obtained following silencing of broadly acting mRNA decay and repression factors, and with available CLIP and related data. This revealed the central role of GC content in mRNA fate, in terms of P-body localization, mRNA translation and mRNA stability: P-bodies contain mostly AU-rich mRNAs, which have a particular codon usage associated with a low protein yield; AU-rich and GC-rich transcripts tend to follow distinct decay pathways; and the targets of sequence-specific RBPs and miRNAs are also biased in terms of GC content. Altogether, these results suggest an integrated view of post-transcriptional control in human cells where most translation regulation is dedicated to inefficiently translated AU-rich mRNAs, whereas control at the level of 5' decay applies to optimally translated GC-rich mRNAs

    Identification and functional modelling of plausibly causative cis-regulatory variants in a highly-selected cohort with X-linked intellectual disability.

    Get PDF
    Identifying causative variants in cis-regulatory elements (CRE) in neurodevelopmental disorders has proven challenging. We have used in vivo functional analyses to categorize rigorously filtered CRE variants in a clinical cohort that is plausibly enriched for causative CRE mutations: 48 unrelated males with a family history consistent with X-linked intellectual disability (XLID) in whom no detectable cause could be identified in the coding regions of the X chromosome (chrX). Targeted sequencing of all chrX CRE identified six rare variants in five affected individuals that altered conserved bases in CRE targeting known XLID genes and segregated appropriately in families. Two of these variants, FMR1CRE and TENM1CRE, showed consistent site- and stage-specific differences of enhancer function in the developing zebrafish brain using dual-color fluorescent reporter assay. Mouse models were created for both variants. In male mice Fmr1CRE induced alterations in neurodevelopmental Fmr1 expression, olfactory behavior and neurophysiological indicators of FMRP function. The absence of another likely causative variant on whole genome sequencing further supported FMR1CRE as the likely basis of the XLID in this family. Tenm1CRE mice showed no phenotypic anomalies. Following the release of gnomAD 2.1, reanalysis showed that TENM1CRE exceeded the maximum plausible population frequency of a XLID causative allele. Assigning causative status to any ultra-rare CRE variant remains problematic and requires disease-relevant in vivo functional data from multiple sources. The sequential and bespoke nature of such analyses renders them time-consuming and challenging to scale for routine clinical use

    Amphioxus functional genomics and the origins of vertebrate gene regulation.

    Get PDF
    Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations

    Human and Non-Human Primate Genomes Share Hotspots of Positive Selection

    Get PDF
    Among primates, genome-wide analysis of recent positive selection is currently limited to the human species because it requires extensive sampling of genotypic data from many individuals. The extent to which genes positively selected in human also present adaptive changes in other primates therefore remains unknown. This question is important because a gene that has been positively selected independently in the human and in other primate lineages may be less likely to be involved in human specific phenotypic changes such as dietary habits or cognitive abilities. To answer this question, we analysed heterozygous Single Nucleotide Polymorphisms (SNPs) in the genomes of single human, chimpanzee, orangutan, and macaque individuals using a new method aiming to identify selective sweeps genome-wide. We found an unexpectedly high number of orthologous genes exhibiting signatures of a selective sweep simultaneously in several primate species, suggesting the presence of hotspots of positive selection. A similar significant excess is evident when comparing genes positively selected during recent human evolution with genes subjected to positive selection in their coding sequence in other primate lineages and identified using a different test. These findings are further supported by comparing several published human genome scans for positive selection with our findings in non-human primate genomes. We thus provide extensive evidence that the co-occurrence of positive selection in humans and in other primates at the same genetic loci can be measured with only four species, an indication that it may be a widespread phenomenon. The identification of positive selection in humans alongside other primates is a powerful tool to outline those genes that were selected uniquely during recent human evolution

    Physical mapping of the human X chromosome

    Get PDF
    The genetic analysis of the human X chromosome has evolved considerably since the beginning of the Human Genome Project. The involvement of the X chromosome in sex determination and its particular inheritance pattern are in a large part responsible for the strong interest that has motivated this progress. This thesis describes the construction of a physical map of the X chromosome in YAC clones, important as a prerequisite to a deeper analysis of its gene content. As part of this work, some technological developments were investigated with the aim of accelerating the rate of data generation. Different hybridisation systems were assessed with radioactive and non-radioacttive labels, and with different supports for binding the target DNA. A new method was implemented to determine or confirm overlaps between YAC clones, which made use of a library of X chromosome Alu-PCR products. Ultimately a large and heterogeneous set of experimental results was analysed manually and with the assistance of computer software, resulting in a YAC contig map covering the majority of the X chromosome. As part of this project, and in the wider context of the construction of a reference YAC collection for the X chromosome community, a database was developed to handle and distribute the information. The first implementation of this Integrated X chromosome Database (IXDB) was performed using the ACEDB software, and was mostly used internally to assist in the YAC map construction. The first version of the YAC map was publicly released in this system. In a second phase, IXDB was transferred to the ORACLE relational system to provide a more sophisticated and comfortable interface to the World Wide Web and a more robust data management system

    Etudes des points chauds de sélection positive dans les génomes de Vertébrés

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    On the importance of evolutionary constraint for regulatory sequence identification

    No full text
    International audienceRegulation of gene expression relies on the activity of specialized genomic elements, enhancers or silencers, distributed over sometimes large distance from their target gene promoters. A significant part of vertebrate genomes consists in such regulatory elements, but their identification and that of their target genes remains challenging, due to the lack of clear signature at the nucleotide level. For many years the main hallmark used for identifying functional elements has been their sequence conservation between genomes of distant species, indicative of purifying selection. More recently, genome-wide biochemical assays have opened new avenues for detecting regulatory regions, shifting attention away from evolutionary constraints. Here, we review the respective contributions of comparative genomics and biochemical assays for the definition of regulatory elements and their targets and advocate that both sequence conservation and preserved synteny, taken as signature of functional constraint, remain essential tools in this task
    corecore